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Abstract

The theoretical treatment of one-phonon thermal
diffuse scattering (TDS) in single-crystal neutron
diffraction at ®xed incident wavelength is reanalysed
in the light of the analysis given by Popa & Willis [Acta
Cryst. (1994), A50, 57±63; Acta Cryst. (1997), A53, 537±
545] for the time-of-¯ight method. Isotropic propagation
of sound with different velocities for the longitudinal
and transverse modes is assumed. As in time-of-¯ight
diffraction, there exists, for certain scanning variables, a
forbidden range in the one-phonon TDS of slower-than-
sound neutrons, and this permits the determination of
the sound velocity in the crystal. A fast algorithm is
given for the TDS correction of neutron diffraction data
collected at a ®xed wavelength: this algorithm is similar
to that reported earlier for the time-of-¯ight case.

1. Introduction

The theoretical treatment of one-phonon thermal
diffuse scattering (TDS) that is close to the Bragg
re¯ection has been treated many years ago by Willis
(1970) and by Cooper (1971) for the angular-dispersive
(AD) method of neutron diffraction. The principal
conclusion from these papers was that the TDS of faster-
than-sound neutrons is similar to that measured in X-ray
diffraction but is essentially different for slower-than-
sound neutrons. The main concept used to explain this
difference and to calculate the TDS correction of the
Bragg peaks was the `scattering surface', de®ned as the
locus of the end points of the wave vectors q of the
phonons contributing to the scattering. The topology of
the scattering surface is dependent on � � c=vn, the
ratio between the sound and the neutron velocities. For
�< 1, the scattering surface is a hyperboloid of two
sheets, one sheet corresponding to phonon creation and
the other to phonon annihilation. On the other hand, for
�> 1, the scattering surface is an ellipsoid. Any point on
this ellipsoid corresponds to either phonon creation or
phonon annihilation, according to whether the scanning
parameter is on one side or the other of the Bragg peak.
By using a simpli®ed one-velocity model, in which all
acoustic phonons have the same velocity, Cooper (1971)
calculated the TDS correction of the Bragg peaks for
three scanning types: the crystal scan, the �±2� scan (or

!=2� scan) and the radial scan. However, the results of
Cooper must be considered to be only partially valid
because, for �> 1, the scattering surface is not always an
ellipsoid. In this paper, we shall reconsider Cooper's
results and extend them to a fourth scanning type known
as the detector scan. All four scans through the reci-
procal-lattice point are illustrated in Fig. 1. The ®gure is
drawn assuming that the Bragg re¯ection occurs at a
sharply de®ned point in reciprocal space and that the
detector accepts radiation at a sharply de®ned scattering
angle 2�.

2. One-phonon scattering surfaces

Let us denote by Q the wavevector transfer between the
incident and scattered neutrons, by Qe the wavevector
transfer of elastically scattered neutrons, and by h! the
energy transfer. As shown by Popa & Willis (1994)
(hereafter PW1²), the three-dimensional scattering
surface de®ned above and denoted by SS3 is the inter-
section of a scattering surface SS4 in four-dimensional
space (Qe; h- !) with a plane P in the space Qe (h- is
Planck's constant h divided by 2�). SS4 is obtained by
projecting into the (Qe; h- !) space, from (Q; h- !) space,
the intersection points between the integration curves
speci®c to the diffraction method and the dispersion
surface of the acoustic phonons. The crossing plane P is
normal to the diffraction plane (i.e. the plane containing
the incident and Bragg scattered beams) and it contains
the scanning direction. The resultant SS3 has different
topologies in three intervals of �: (0; ��), (��; ��) and
(��;1). In the ®rst interval, SS3 is a hyperboloid of two
sheets which is de®ned for any value of the scanning
parameter. In the second interval, SS3 is also a hyper-
boloid of two sheets but there exists a ®nite range in the
scanning parameter for which TDS is forbidden. In the
third interval of �, SS3 is an ellipsoid, and TDS is then
permitted in a ®nite range of the scanning parameter
and forbidden outside this range. In other words, the
TDS differential cross section is de®ned in any range of
Qe if � � ��, but only in a certain domain of Qe if �>��,

² There are two minor errors in PW1 which do not affect the
remaining analysis in that paper. In the de®nition of Q on p. 58 of PW1,
 should be replaced by 1=2 and, in equation (11) on p. 60, ' should be
replaced by '1=2.



this domain being dependent on the magnitude of �.
Finally, the value of �� depends on the type of scan.

Although PW1 refers speci®cally to the time-of-¯ight
(TOF) diffraction method, all the statements above are
valid for AD diffraction and it is only the particular
values of �� and �� that are speci®c to the diffraction
method. For the TOF method, �� depends on the
diffractometer setting (i.e. ¯ight paths and scattering
angle). For the AD method, as will be seen below and in
agreement with Willis (1970) and Cooper (1971), �� is
always 1. However, �� is 1 only for the 2� scan (or
detector scan); for other scanning types, �� > 1, which
necessitates the recalculation of the TDS correction
factor in the AD method. In this paper, an algorithm for
the TDS correction is given, which is similar to that
reported by Popa & Willis (1997) (hereafter PW2) for
the TOF method. As in PW2, an isotropic model with
two sound velocities is used. These velocities may or
may not be known beforehand: in the latter case, the
algorithm can be incorporated in the structure re®ne-
ment program by treating the sound velocities as re®n-
able parameters.

A second reason for re-analysing the problem of TDS
in AD diffraction is to demonstrate the possibility of
measuring by this diffraction method the sound velocity
in the crystal. Willis et al. (1986) have determined the
sound velocity in pyrolitic graphite by using the TOF
diffraction method. Similar measurements on calcium

¯uoride and barium ¯uoride were reported by Carlile &
Willis (1989), who determined the width of the TOF
interval which is forbidden for TDS and which occurs
when � is in the range (��; ��). By choosing the
diffractometer setting in the AD method to have
��!1, a very large range of sound velocity can be
measured and, as will be shown below, this condition can
be realised by using the radial scan.

3. Differential cross section for thermal diffuse
scattering in the AD neutron diffraction method

In the AD diffraction method, the TDS differential cross
section is derived by using the same approximations as
for the TOF method. Thus, only the scattering from low-
energy acoustic phonons is taken into account. These
phonons are associated with longitudinal or transverse
modes, with group velocities c1 and c2, respectively. The
high-temperature approximation (whereby the mode
energy is equal to KBT where KB is the Boltzmann
constant) is used and the instrumental resolution is
ignored. Details of the consequences of these approx-
imations can be found in PW1. The ¯ow of calculation is
similar, but there are some speci®c differences.

We start from the same double differential cross
section [equation (8) in PW1], performing the sum over
q and then integrating over the energy of the scattered
neutron E2, instead of over the energy E1 of the incident
neutron. The dimensionless variables x, y, 
, � are also
introduced but the signi®cance of x and y are different.
In this paper, x � �k2 ÿ kB�=kB, where k2 � jk2j and
kB � jk2Bj, with k2 the wavevector of neutrons scattered
in a general direction and k2B the wavevector of the
Bragg scattered neutrons. The incident neutrons, of
wavevector k1, have a ®xed wavelength and k1 � k1B

because resolution is ignored. y is the offset angle of the
crystal from the Bragg angle �B, i.e. y � � ÿ �B. The
variables 
 and � have the same signi®cance as in PW1, �
being the angle between k2 and its projection in the
diffraction plane and 
 being the angle between this
projection and k2B (see Fig. 2).

The scattering geometry is illustrated in Fig. 2. 2�HB

is the reciprocal-lattice vector to the lattice point hkl at
P, and 2�H is the same vector after rotation of the
crystal about an axis normal to the diffraction plane. The
vectors k2, Q and q are shown projected in this plane.

The variables x, y, 
, � de®ne the coordinates of points
in the spaces (Q; h- !), (Qe; h- !) and Q. Let us choose an
orthogonal coordinate system (I; J;L) where

I � �k1B � k2B�=jk1B � k2Bj;
J � �k2B ÿ k1B�=jk2B ÿ k1Bj;
L � I� J:

For phonon scattering in the neighbourhood of the
Bragg peak, x; y; 
; �� 1 and we can write

Fig. 1. Diagram in reciprocal space illustrating the four types of scan
through a Bragg re¯ection. (O is the origin of reciprocal space and
A is the centre of the Ewald sphere.) For the more general scans
considered in the text, the scanning directions are the same but the
scans do not necessarily pass through the lattice point.
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Q � 2�HB � kB�x cos �B ÿ 
 sin �B�I
� kB�x sin �B � 
 cos �B�J� kB�L �1a�

2�H � 2�HB ÿ 2kB�sin �B�yI �1b�
Qe � Q�x � 0� �1c�

and

! � h- �kB�2x=mn; �1d�
where mn is the neutron mass.

In some scanning procedures used in the AD
diffraction method, the crystal and detector are moved
together. In this case, y and 
 are dependent variables.
To have independent variables, we introduce 
 0 in place
of 
 by the following relation:


 � ry� 
 0: �2�
By choosing r appropriately and varying y or 
 0, any
scanning type, conventional or otherwise, can be carried
out. Thus,

(a) r � 0, 
 0 constant, y varying, de®nes the ! or
crystal scan (crystal moving);

(b) r � 0, y constant, 
 0 varying, de®nes the 2� or
detector scan (detector moving);

(c) r � 2, 
 0 constant, y varying, de®nes an !=2� scan
(both crystal and detector moving);

(d) r � 2 sin2 �B, 
 0 constant, y varying, de®nes a
radial scan (both crystal and detector moving).
As will be seen in the next section, the radial scan gives
the possibility of measuring any sound velocity greater
than the neutron velocity.

Returning now to the calculation of the differential
cross section, we need to use the momentum and energy
conservation laws:

q � Qÿ 2�H; �3a�
! � ÿ"!j�q�: �3b�

Here, !j�q� is the phonon frequency for the branch j, " is
�1 for phonon creation andÿ1 for phonon annihilation.
In the isotropic approximation !j�q� � cjq, where cj is
the sound velocity. If this expression is inserted into (3b)
and (1d) is used, the phonon wave number becomes

q � ÿ"kBx=�j: �4�
Now, by equalizing q2 from (3a) and (4) and taking into
account (1a) and (2), we obtain the following equation
for the variable x (index j omitted):

��2 ÿ 1�x2 � 2�2Mx� �2N2 � 0; �5�
where M and N2 are de®ned by

M � y sin 2�B; �6a�
N2 � �
 0 ÿ by�2 �M2 � �2 �6b�

with b given by equation (9a) below. Equation (5)
represents the scattering surface SS4. It is similar, but

not identical, to equation (16) in PW1 for time-of-¯ight
diffraction. The solutions of (5) give the energies and
wave vectors of those acoustic phonons that contribute
to the TDS and are measured simultaneously with the
Bragg scattering at a given point of the space Qe , near to
2�HB. The solutions are:

x1;2 � ��ÿ�M��1=2�=��2 ÿ 1�; �7a; b�
where � � �2M2 ÿ ��2 ÿ 1�N2.

For � � 1, the solutions (7a) exist at any point
(y, 
 0, �). One solution is positive and corresponds to
phonon annihilation, the other is negative and corre-
sponds to phonon creation. For �> 1, the solutions exist
only for the points (y, 
 0, �) inside the cone of two sheets
��y; 
 0; �� � 0. Both take the sign of ÿM, corre-
sponding to phonon creation for y> 0 and to phonon
annihilation for y< 0. Outside the cone the solutions x1,2

do not exist and there is no TDS.
The cone equation is

� � �1ÿ �2�
 02 � a2�1ÿ �2=�2
��y2

ÿ 2b�1ÿ �2�
 0y� �1ÿ �2��2

� 0; �8�
where

b � 2 sin2 �B ÿ r; �9a�
a2 � b2 � sin2 2�B �9b�
�2
� � a2=b2: �9c�

Fig. 2. Scattering geometry in reciprocal space showing de®nition of
angles 
, y, which are assumed small.
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The cone axis lies in the plane (y, 
 0) and its slope has
the sign of the parameter b de®ned by (9a). When �
increases from 1 to1, the cone angle decreases from �
to zero. There is a particular value � � �� with �> 1,
which is de®ned by (9c) and for which the axis y lies on
the cone surface; for 1<�<��, this axis is inside the
cone and, for �� <�<1, it is outside. An exception is
the case of the radial scan, for which b � 0; then
�� � 1 and the axis y is the cone axis for any value of
�> 1.

All these statements are readily proved by writing
down the solutions of equation (8). This is performed in
Appendix A where the solutions are denoted by
y��
 0; �� if the equation is solved in the variable y and by

 0��y; �� if the equation is solved in 
 0. The curves
y � y��
 0; �� or 
 0 � 
 0��y; �� for a given value of �
represent the cross sections of the cone with a plane
parallel to the (y, 
 0) plane. This is a two-branch
hyperbola degenerating into its asymptotic lines for
� � 0. Fig. 3 illustrates typical cases drawn for �B � 30�.
The dashed curves show the cross section of the cone
with the plane � � 0:02 and the full lines the cross
section with � � 0. Figs. 3(a) and (b) both apply to the
crystal scan and the detector scan, and Figs. 3(e) and ( f )
to the !=2� scan. The value of � is in the range (1, ��)
for Figs. 3(a) and (e) and in the range (��,1) for Figs.
3(b) and ( f ). Figs. 3(c) and (d) apply to the radial scan
(with �� � 1) for two different values of �> 1 but
taking b � 0.

Having found the domain of de®nition in the space
Qe, we can now write down the expression for the TDS
differential cross section:

d�TDS=d
�Qe� � �4�=3��V=vc�jFj2 sin2 �B

�P2

j�1

j�KBT=Mcc2
j �Sj�y; 
 0; ��: �10�

Here, V is the sample volume, vc and Mc the unit-cell
volume and mass, F the structure factor for Bragg
scattering, KB the Bolzmann constant and T the sample
temperature. If the index j (which comes from its
dependence on �j) is ignored, the function S(y, 
 0, �) in
(10) is

S�y; 
 0; �� �

1=�N2

for � � 1 and for any point �y; 
 0; ��
�1=�N2���jMj=�1=2�

for � > 1 and for �y; 
 0; �� inside the

cone.

8>>><>>>:
�11�

At the point Qe � 2�HB, the function S(y, 
 0, �) has an
in®nite integrable singularity, and if �> 1 this function
has the same kind of singularity on the surface of its
domain of de®nition. The TDS differential cross section
for AD diffraction, as given by (10) and (11), has the

same form as that derived in PW1 for the TOF method,
but the functions M, N and � are different.

4. The measurement of sound velocity by the AD
method of neutron diffraction

If slower-than-sound neutrons are used, the existence of
discontinuities on the surface of the de®nition domain of
S(y, 
 0, �) can be exploited to measure the sound velo-
city in the crystal. To see how this can be performed, let
us ®rst integrate S(y, 
 0, �) over the parameter �, which
represents the vertical divergence of the scattered beam
from the horizontal diffraction plane. If the range of
divergence is (ÿ�0, �0), one obtains for � � 1:

S�y; 
 0� � Aÿ1�2=�� arctan��0Aÿ1�; �12�
where the function A is

A2�y; 
 0� � N2 ÿ �2 � �
 0 ÿ by�2 � y2 sin2 2�B: �13�
For �> 1, we have:

S�y; 
 0� �
Aÿ1�2=�� arctan��0�jMjAÿ1�ÿ1=2�

for �y; 
 0� � D��0�
Aÿ1 for �y; 
 0� � D�0� ÿD��0�
0 otherwise,

8><>:
�14�

where D(�) denotes the domain of points (y, 
 0) lying
outside the branches of the hyperbola in Fig. 3. Equation
(14) shows that S(y, 
 0) has a discontinuity of amplitude
1=A on the borders of its de®nition domain D(0), which
are the lines 
 0 � 
 0��y; 0�. Fig. 4 shows some typical
dependencies of S(y, 
 0) on the variable y for a set of
discrete values of 
 0. Figs. 4(a), (b), (c) have been drawn
by using the same parameters r, �B, � and �0 � � as those
used for Figs. 1(a), (d), ( f ), respectively. If 1 < � < ��,
there exists a range yÿ�
 0; �0� � y � y��
 0; �0� where
TDS is forbidden, whereas TDS is permitted in this
range but forbidden outside if �� < � <1. At the limits
of this range in y, S(y, 
 0) has a sharp cut off.

To measure a sound velocity greater than the neutron
velocity, we need to set a high thin slit in the front of the
detector and to perform a scan far enough from the
point �y; 
 0� � �0; 0� so as not to record the Bragg
intensity. If the !=2� scan is used, �� � 1= cos �B. This is
the same expression as for TOF diffraction, which is not
surprising as in both cases the scanning takes place along
a direction parallel to the reciprocal-lattice vector HB.
The width of the forbidden ( f ) or permitted ( p) range
for TDS is then

�yf ;p � j
 0j tan �B��2 ÿ 1�1=2=j1ÿ �2 cos2 �Bj:
For the ! scan, �� � 1= sin �B and the width of the
forbidden or permitted range for TDS is

�yf ;p � j
 0j cot �B��2 ÿ 1�1=2=j1ÿ �2 sin2 �Bj:
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For the detector scan there is a permitted range for any
� > 1 (see Figs. 3a, b) whose width is

�
p � 2jyj sin 2�B=��2 ÿ 1�1=2:

Finally, for the radial scan, �� � 1 and there exists a
forbidden range of width

�yf � j
 0j��2 ÿ 1�1=2= sin 2�B:

The detector scan in the AD method was used many
years ago by Shirane et al. (1965) and by Alperin et al.
(1967) to measure the magnon dispersion relation in
iron and magnetite, respectively. Hitherto, the TOF

Fig. 3. For � > 1, the function S(y, 
 0, �) is de®ned only inside a cone of two sheets. The dashed curves show the cross section of the cone with the
plane � � 0:02 and the thick lines the cross section with � � 0. (a) and (b) correspond to both the ! scan and the 2� scan, (c) and (d) to the
radial scan, and (e) and ( f ) to the !=2� scan. �B is 30� and the values of r, �� and � are respectively: (a) 0, 2, 1.5; (b) 0, 2, 2.4; (c) 0.5,1, 1.1; (d)
0.5,1, 2.4; (e) 2, 2=31=2, 1.1; ( f ) 0.5, 2=31=2, 1.4.
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method only has been used for studying acoustic
phonons: by Willis et al. (1986) to measure the sound
velocity in pyrolitic graphite and by Carlile & Willis
(1989) to determine the sound velocity in calcium and
barium ¯uorides. These authors measured the width of
the forbidden range in time-of-¯ight diffraction patterns.
As shown in this paper, such a forbidden range appears
also in the AD method, and this range can be observed
for any sound velocity exceeding the neutron velocity by
employing the radial scan. The best choice of scan is the
one offering the sharpest intensity cut off, and this
requires, in turn, an evaluation of the instrumental
resolution function.

5. The TDS correction factor

By using (10), one obtains the TDS correction factor of
the Bragg peak (see PW2) for the AD method of
neutron diffraction:

� � �8�=3��vc=�
3
B� sin3 �B cos �B

�P2

j�1

j�KBT=Mcc2
j ����j; �B; y0; 
0; �0�: �15�

Here �2y0; 2
0; 2�0� is the window in the space (y, 
 0, �)
containing the entire Bragg peak and � is given by the
following expressions:

� � 2�S0 ÿ S�y0��; �16a�

S0 �
Ry0

0

dy S�y�; �16b�

S�y� � R
0

ÿ
0

d
 0 S�y; 
 0�: �16c�

As in PW2, to calculate (16c) we split S(y, 
 0)
given by equations (12)±(14) into two terms:
S�y; 
 0� � S1�y; 
 0� ÿ S��y; 
 0�. The function S1�y; 
 0�,
which is the limit of S(y, 
 0) for �0 !1, can be inte-
grated analytically over 
 0. The result is two terms, the
®rst one of the formÿln(y) with an in®nite singularity at
y � 0 which can be integrated analytically once (16b) is
calculated, and the second one which can be integrated
numerically. The function S�(y, 
 0) can also be inte-
grated numerically. As we have shown in PW2, a suf®-
ciently good precision is obtained by using a Gauss
quadrature formula with four nodes for a single integral.
With this small number of integration nodes, � can be
calculated using a fast routine, which can then be
incorporated in a structural re®nement program with
the sound velocities c1, c2 treated as re®nable param-
eters if these are not known beforehand. (This possibi-
lity was demonstrated in PW2 using a simulated set of
diffraction data.) The algorithm for calculating � is given
in Appendix B for any scanning procedure involving
crystal rotation.

Fig. 4. The dependence of S(y, 
 0) on the variable y for various discrete
values of 
 0. The ®gure was drawn for �B � 30�, �0 � 0:02. The
values of r and � in (a), (b) and (c) are the same as in Figs. 3(a), (d)
and ( f ), respectively.
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A routine has been written in Fortran which applies
only to the conventional scanning types, the ! scan and
the !=2� scan. The size of this routine is much reduced
by observing that ���; �B; y0; 
0; �0� for the !=2� scan is
equal to ���; �=2ÿ �B; y0; 
0; �0� for the ! scan. Some
examples obtained with this routine of the dependence
of � on � are given in Fig. 5. As for TOF diffraction,
under certain conditions there is a limiting value �m

beyond which the TDS correction is zero. This condition
is given in Appendix C.

APPENDIX A
Roots of the equation D�y; c0; d� � 0

Solved in 
 0 the roots are


 0�s�y; �� � sP=��2 ÿ 1�;

 0ÿs�y; �� � s�a2��2=�2

� ÿ 1�y2 � ��2 ÿ 1��2�=P;

where s � sign�by� and

P � jbyj��2 ÿ 1�
� f��2 ÿ 1��y2 sin2 2�B ÿ ��2 ÿ 1��2�g1=2:

Solving for y and denoting sign(b
 0) now by s we
have:

y�s�
 0; �� � s��2 ÿ 1��
 02 � �2�=Q;

yÿs�
 0; �� � sQ=�a2��2=�2
� ÿ 1��;

where

Q � jb
 0j��2 ÿ 1� � f��2 ÿ 1��
 02 sin2 2�B

ÿ a2��2=�2
� ÿ 1��2�g1=2:

For b � 0, we have


 0��y; �� � ��y2 sin2 2�B ÿ ��2 ÿ 1��2�1=2=��2 ÿ 1�1=2

and

y��
 0; �� � ����2 ÿ 1��
 02 � �2��1=2= sin 2�B:

APPENDIX B
The algorithm for calculating factor s

In this Appendix, we denote sign(b) by s. We start from

S�y; 
 0� � S1�y; 
 0� ÿ S��y; 
 0�;

where

S1�y; 
 0� � Aÿ1 �17�
and

S��y; 
 0� �
Aÿ1�1ÿ �2=�� arctan��0Aÿ1�� for � � 1

Aÿ1�1ÿ �2=�� arctan��0�jMjAÿ1�ÿ1=2��
for � > 1

8<:
�18�

Table 1. Expressions for S1(y)

y range 0 < y < y10 y10 < y < y20 y20 < y <1
0 < � � 1 ÿ2 ln y� R�y� � R�ÿy�
1 < � < �� R0 ÿ ln y� R�sy� � R0=2 ÿ2 ln y� R�y� � R�ÿy�
� � �� R0 ÿ ln y� R�sy� � R0=2 (y20 � 1)

�� < � <1 R0 ÿ ln y� R�sy� � R0=2 0

Fig. 5. The parameter � as a function of � for 
0 � 0:025 and �0 � 0:03.
In (a), y0 � 0:03; �B � 20� (full curve), �B � 45� (long-dashed
curve) and �B � 70� (short-dashed curve). In (b), �B � 45�;
y0 � 0:02 (full curve), y0 � 0:03 (long-dashed curve) and
y0 � 0:04 (short-dashed curve). The curves apply to the ! scan, or
�=2 minus these angles for the !=2� scan.
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and where M, A are given by (6a) and (13), respectively.
Both S1(y, 
 0) and S�(y, 
 0) are de®ned at any point
(y, 
 0) if � � 1. For � > 1, S1(y, 
 0) is de®ned only on
D(0) and S�(y, 
 0) only on D(�0).

As was shown in PW2, (17) can be integrated analy-
tically over 
 0 resulting in S1(y). This function is given
by different expressions in different ranges of � and y. If
we use the de®nitions

y10 � min�jy��
0; 0�j; jyÿ�
0; 0�j�;
y20 � max�jy��
0; 0�j; jyÿ�
0; 0�j�;
R0 � ln���� 1�=��ÿ 1��

R�y� � lnf��
0 ÿ by� � A�y; 
0��= sin 2�Bg;
the expressions for S1(y) are shown in Table 1.

S�(y) can only be obtained from (18) by numerical
integration over 
 0. In different � and y ranges, S�(y) is
equal to zero or to one of the following functions:

T0�y� �
R
0

ÿ
0

d
 0S��y; 
 0�; T�y� � R
 0��y;�0�


 0ÿ�y;�0�
d
 0S��y; 
 0�;

T��y� �
R
0


 0ÿ�y;�0�
d
 0S��y; 
 0�; Tÿ�y� �

R
 0��y;�0�

ÿ
0

d
 0S��y; 
 0�:

We also need to de®ne

y1 � min�jy��
0; �0�j; jyÿ�
0; �0�j�;
y2 � max�jy��
0; �0�j; jyÿ�
0; �0�j�;
y� � �0��2 ÿ 1�1=2= sin 2�B;


 0� � by�
�� � ���1� 
2

0 sin2 2�B=�a2�2
0��1=2:

Now we can write down the corresponding table for
S�(y) (Table 2). In this table, {0;T(y)} corresponds to
fj
 0�j � 
0; j
 0�j<
0g.

It is a trivial matter for the reader to write down the
explicit expressions of the integrals (16b) of S1(y) and
S�(y).

APPENDIX C
The limiting value of b for a zero TDS correction

There are two conditions for a limiting value �m beyond
which the TDS correction is zero: y0 � y10 and y0 � y�.
The ®rst condition is ful®lled only when 
0 > y0|b|. In
this case, the two conditions give, respectively,

�1m � �1� y2
0 sin2 2�B=�
0 ÿ y0jbj�2�1=2;

�2m � �1� y2
0 sin2 2�B=�

2
0�1=2

and then �m � max��1m; �2m�. But if 
0 � y0|b| then
�m � 1.
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Table 2. Expressions for S�(y)

y range 0 < y < y� y� < y < y1 y1 < y < y2 y2 < y <1
0 < � � 1 T0(y)

1 < � < �� 0 {0;T(y)} Ts(y) T0(y)

� � �� 0 {0;T(y)} Ts(y) (y2 � 1)

�� < � < �� 0 {0;T(y)} Ts(y) 0

�� < � <1 0
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